On the Average-Case Hardness of Total Search Problems

Chethan Kamath, Pietrzak Group

Thesis Defence, February 3rd, 2020

Outline

Total Search Problems
Motivation
Subclasses
Cryptography and Total Search Problems

Our Results
Summary
Techniques

Conclusion

Needle in a Haystack, Guaranteed: Sperner's Lemma

Search Problems vs. Total Search Problems [MP91,P94]

Subclasses of TFNP: Arguments of Existence

PPAD: Polynomial Parity Argument on Digraphs

- Compete problem for PPAD: End-of-Line (EOL)
- Nash, Brouwer, Sperner \in PPAD [P94]
- They are also PPAD-complete [DGP05,CDT09]

End-of-Line

- Input: A digraph on $\{0,1\}^{n}$ with in-/out-degree ≤ 1
- Guarantee: 0^{n} is a source -
- Solution: Any sink •
- Problem: Instance easy if the whole digraph given as input
- Succinct representation: Circuits $S, P:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Cryptography and TFNP

Cryptography and TFNP

- Goal: Come up with hard distribution on TFNP instances.
- Why? To defeat heuristics
- E.g.: Lemke-Howson algorithm and NASH
- How? Reduce from cryptographic hardness assumptions

Cryptography and TFNP: What is known?

Total Search Problems
Motivation
Subclasses
Cryptography and Total Search Problems

Our Results
Summary
Techniques

Conclusion

Our Results

- Theorem 1: EOL is hard-on-average relative to a random oracle assuming Iterated-Squaring is hard [CHK+19a]
- Theorem 2: EOL is hard-on-average relative to a random oracle assuming \#SAT is hard (worst case) [CHK+19b]

Our Results...

Further strengthenings:

- Theorem 2+: EOL is hard-on-average assuming the soundess of the Fiat-Shamir Transform for Sumcheck Protocol
- Theorems 1 and $2+$ apply to CLS \subseteq PPAD [HY17]
- Contains interesing problems from game theory (e.g., Simple stochastic games, mean payoff games) [FGMS19]

Techniques

Techniques...

- Intermediate promise problem: Sink-Of-VERIfiable-Line
- Step 1: Construct SVL from code obfuscation
- Step 2: Simulate EOL using reversible pebbling
- Theorem 2: SVL is hard-on-average relative to a random oracle assuming \#SAT is hard (worst case) [CHK+19b]

Sink-of-Verifiable-Line (SVL)

- Input: A digraph on $\{0,1\}^{n}$ with in-/out-degree ≤ 1
- Path starting at 0^{n} defined by successor $S:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- Verifier circuit V: $\{0,1\}^{n} \times\left[2^{n}\right] \rightarrow$ ACCEPT/REJECT
- Promise Verifier accepts (v, i) iff $v=S^{i}\left(0^{n}\right)$
- Solution: L-th vertex

From \#SAT to SVL: Verifiable Counting

- Goal: reduce \#SAT instance $\phi\left(x_{1}, \ldots, x_{n}\right)$ to $\operatorname{SVL}(\mathrm{S}, \mathrm{V}, L)$
- Attempt 1: Set i-th vertex as σ_{i} : \# satisfying assignments $\leq i$
- Problem: No way to efficiently verify intermediate count
- Attempt 2: Append a proof π_{i}
- Problem: getting π_{i} to be small (i.e., $\operatorname{poly}(n)$) ...

From \#SAT to SVL: Verifiable Counting...

- Problem: getting π_{i} to be small (i.e., poly (n))
- Solution: use the Sumcheck Protocol [LFKN92]
- Problem: Sumcheck Protocol is interactive
- Solution: use Fiat-Shamir Transform [FS86]
- Problem: next proof $\mathrm{S}\left(i, \sigma_{i}, \pi_{i}\right)=\left(i+1, \sigma_{i+1}, \pi_{i+1}\right)$
- Solution: recursive proof-merging

Total Search Problems
Motivation
Subclasses
Cryptography and Total Search Problems

Our Results
Summary
Techniques

Conclusion

Conclusion

- Theorem 1: Factoring instead of Iterated-Squaring
- Theorem 1: Removing random oracle
- Theorem 2: Hardness in CLS/PPAD relative to random oracle

Hunts Needle in a Haystack

How long does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

Desperate junkies search for an alleged "needle in the haystack."

Thank you!

References

[BO06] Buresh-Oppenheim. On the TFNP complexity of factoring. Unpublished
[BPR15] Bitansky, Paneth and Rosen. On the cryptographic hardness of finding a Nash equilibrium. FOCS'15
[CDT09] Chen, Deng and Teng. Settling the complexity of computing two-player Nash equilibria. JACM'09
[CHK+19a] Choudhuri et al.. PPAD-hardness via iterated squaring modulo a composite. Unpublished.
[CHK $+19 \mathrm{~b}]$ Choudhuri et al.. Finding a nash equilibrium is no easier than breaking Fiat- Shamir. STOC'19
[DGP05] Daskalakis, Goldberg and Papadimitrou. The complexity of computing a Nash equilibrium. SICOMP'09 [FGMS19] Fearnley et al.. Unique end of poten-tial line. ICALP'19

References...

[FS86] Fiat and Shamir. How to prove yourself: Practical solutions to identification and signature problems. Crypto'86 [HNY17] Hubáček, Naor and Yogev. The journey from NP to TFNP hardness. ITCS'17
[HY17] Hubáček and Yogev.Hardness of continuous local search: Query com- plexity and cryptographic lower bounds. SODA'17
[J12] Jeřabek. Integer factoring and modular square roots. JCSS'16
[LFKN92] Lund et al.. Algebraic methods for interactive proof systems JACM'92
[MP91] Megiddo and Papadimitrou. On total functions, existence theorems and computational complexity. TCS'91 [P94] Papadimitrou. On the complexity of the parity argument and other inefficient proofs of existence. JCSS'94

